The abelian sandpile model on fractals

Russ Thompson

MSRI, Texas A&M

September 12, 2011
Abelian sandpile model

- Originated from Bak, Tang, and Wiesenfeld as a model for self-organized criticality, and later formalized by Dhar.
Originated from Bak, Tang, and Wiesenfeld as a model for self-organized criticality, and later formalized by Dhar.

Grains of sand are placed according to some process on a finite directed graph.

What can we say about the avalanches and stable configurations and how do these behave in the limit as the graph grows to infinity?
Abelian sandpile model

- Originated from Bak, Tang, and Wiesenfeld as a model for self-organized criticality, and later formalized by Dhar.
- Grains of sand are placed according to some process on a finite directed graph.
- When too many grains accumulate at a given vertex it topples.
Abelian sandpile model

- Originated from Bak, Tang, and Wiesenfeld as a model for self-organized criticality, and later formalized by Dhar.
- Grains of sand are placed by according to some process on a finite directed graph.
- When too many grains accumulate at a given vertex it topples.
- This causes an avalanche of topplings until the sandpile stabilizes (assuming it ever stabilizes).
Abelian sandpile model

- Originated from Bak, Tang, and Wiesenfeld as a model for self-organized criticality, and later formalized by Dhar.
- Grains of sand are placed according to some process on a finite directed graph.
- When too many grains accumulate at a given vertex it *topples*.
- This causes an *avalanche* of topplings until the sandpile stabilizes (assuming it ever stabilizes).
- What can we say about the avalanches and stable configurations and how do these behave in the limit as the graph grows to infinity?
Let $G = (V, E)$ be a directed graph. A sandpile on G is given by a height function $h : V \to \mathbb{Z}^*$.
Let $G = (V, E)$ be a directed graph. A \textit{sandpile} on G is given by a height function $h : V \to \mathbb{Z}^*$.

Grains of sand are added by the grain addition operators,

$$A_n h = h + \delta_{X_n},$$

where X_n is some random walk on V.

Fix h_0. Then $h_n = A_n \cdots A_1 h_0$ is a sequence of sandpiles on G.

Russ Thompson

The abelian sandpile model on fractals
Each vertex v has a threshold γ_v, usually taken to be $\text{outdeg}(v)$, and if $h(v) > \gamma_v$ for some v we say the sandpile is \textit{unstable} and that v is an unstable vertex.
Each vertex v has a threshold γ_v, usually taken to be $\text{outdeg}(v)$, and if $h(v) > \gamma_v$ for some v we say the sandpile is unstable and that v is an unstable vertex.

A sandpile is stabilized by toppling unstable vertices, one at a time, until no vertices are unstable. This results in a stable sandpile h°. We assume sandpiles stabilize before adding more grains.
Each vertex v has a threshold γ_v, usually taken to be $\text{outdeg}(v)$, and if $h(v) > \gamma_v$ for some v we say the sandpile is unstable and that v is an unstable vertex.

A sandpile is stabilized by toppling unstable vertices, one at a time, until no vertices are unstable. This results in a stable sandpile h°. We assume sandpiles stabilize before adding more grains.

Let $\Delta = D - A$, where $D = \text{diag}(\text{outdeg}(v_i))$ and A is the adjacency matrix of X. Toppling v corresponds to $h' = h - \Delta_{(v,\cdot)}$.

The model II
A *sink* is a vertex with out-degree zero, and a sink s is said to be *global* if there exists a path from every vertex to s.

Lemma (Dhar) If G has a global sink then every sandpile stabilizes, the order of topplings for an unstable sandpile does not affect the stabilized sandpile, and the order in which grains are added does not affect the final stabilized sandpile.
A *sink* is a vertex with out-degree zero, and a sink s is said to be *global* if there exists a path from every vertex to s.

Lemma (Dhar)

If G has a global sink then
- every sandpile stabilizes,
- the order of topplings for an unstable sandpile does not affect the stabilized sandpile, and
- the order in which grains are added does not affect the final stabilized sandpile.
A huge sandpile (courtesy Seth Terashima)
The sandpile group

There are reduced sandpiles which can be obtained from any other sandpile by adding some grains and stabilizing. These are called recurrent sandpiles, and they form an abelian group under addition.
There are reduced sandpiles which can be obtained from any other sandpile by adding some grains and stabilizing. These are called recurrent sandpiles, and they form an abelian group under addition.

This group, called the sandpile group of a graph G. If G has n non-sink vertices,

$$S(G) = \mathbb{Z}^n / \Delta' \mathbb{Z}^n,$$

where Δ' is the reduced Laplacian, obtained by deleting the rows and columns of Δ corresponding to the sinks.
The sandpile group

There are reduced sandpiles which can be obtained from any other sandpile by adding some grains and stabilizing. These are called *recurrent sandpiles*, and they form an abelian group under addition.

This group, called the *sandpile group* of a graph G. If G has n non-sink vertices,

$$S(G) = \mathbb{Z}^n / \Delta' \mathbb{Z}^n,$$

where Δ' is the reduced Laplacian, obtained by deleting the rows and columns of Δ corresponding to the sinks.

The sandpile group is also isomorphic to the group of harmonic functions modulo 1 on G which vanish on the sinks [Solomyak].

Russ Thompson

The abelian sandpile model on fractals
The sandpile group

There are reduced sandpiles which can be obtained from any other sandpile by adding some grains and stabilizing. These are called recurrent sandpiles, and they form an abelian group under addition.

This group, called the sandpile group of a graph G. If G has n non-sink vertices,

$$S(G) = \mathbb{Z}^n / \Delta' \mathbb{Z}^n,$$

where Δ' is the reduced Laplacian, obtained by deleting the rows and columns of Δ corresponding to the sinks.

The sandpile group is also isomorphic to the group of harmonic functions modulo 1 on G which vanish on the sinks [Solomyak].

Theorem (Matrix-Tree Theorem)

Let G be a digraph and choose a vertex v whose incoming edges we prune to make it a sink. The order of the corresponding sandpile group is $\det(\Delta')$, which is the number of oriented spanning trees in G rooted at v.

Russ Thompson

The abelian sandpile model on fractals
The identity sandpile on a 198 by 198 grid (courtesy Mike Creutz).
For an infinite graph G, a sandpile h is said to be recurrent if for all finite $V \subset G_V$, $h|_V$ is recurrent for the induced subgraph of G.
For an infinite graph G, a sandpile h is said to be recurrent if for all finite $V \subseteq G_V$, $h|_V$ is recurrent for the induced subgraph of G.

- Do the uniform measures, μ_V, on recurrent sandpiles on V converge weakly to a measure μ called the *infinite volume limit*? Is this limit concentrated on recurrent configurations of G?
For an infinite graph G, a sandpile h is said to be recurrent if for all finite $V \subseteq G_V$, $h|_V$ is recurrent for the induced subgraph of G.

- Do the uniform measures, μ_V, on recurrent sandpiles on V converge weakly to a measure μ called the *infinite volume limit*? Is this limit concentrated on recurrent configurations of G?
- Is μ stationary for some Markov process?
For an infinite graph G, a sandpile h is said to be recurrent if for all finite $V \subset G_V$, $h|_V$ is recurrent for the induced subgraph of G.

- Do the uniform measures, μ_V, on recurrent sandpiles on V converge weakly to a measure μ called the *infinite volume limit*? Is this limit concentrated on recurrent configurations of G?
- Is μ stationary for some Markov process?
- Is grain addition well behaved in the infinite volume limit and is the model still abelian with respect to toppling order?

Theorem (Jarai, Redig)

For \mathbb{Z}^d, $d \geq 3$, there exist infinite volume addition operators which leave the infinite volume limit μ invariant, and there exists a Markov process for which μ is the stationary measure.

Russ Thompson

The abelian sandpile model on fractals
For an infinite graph G, a sandpile h is said to be recurrent if for all finite $V \subset G_V$, $h|_V$ is recurrent for the induced subgraph of G.

- Do the uniform measures, μ_V, on recurrent sandpiles on V converge weakly to a measure μ called the *infinite volume limit*? Is this limit concentrated on recurrent configurations of G?
- Is μ stationary for some Markov process?
- Is grain addition well behaved in the infinite volume limit and is the model still abelian with respect to toppling order?
For an infinite graph G, a sandpile h is said to be recurrent if for all finite $V \subset G_V$, $h|_V$ is recurrent for the induced subgraph of G.

- Do the uniform measures, μ_V, on recurrent sandpiles on V converge weakly to a measure μ called the infinite volume limit? Is this limit concentrated on recurrent configurations of G?
- Is μ stationary for some Markov process?
- Is grain addition well behaved in the infinite volume limit and is the model still abelian with respect to toppling order?

Theorem (Jarai, Redig)

For \mathbb{Z}^d, $d \geq 3$, there exist infinite volume addition operators which leave the infinite volume limit μ invariant, and there exists a Markov process for which μ is the stationary measure.
Let Y be a random variable associated with some property of an avalanche (number of sites in an avalanche, total number of topplings). We say the ASM on a sequence of graphs $G_n \xrightarrow{\mu} G$ is *critical* if there exists a *critical exponent* $\delta_Y > 0$ such that

$$\lim_{n \to \infty} P_{\mu_n} (Y = y) \sim y^{-\delta_Y},$$

where μ_n is the uniform measure on recurrent sandpiles on G_n.

No criticality for Z. Criticality for Z_d, $d > 1$. Regular trees are critical. Non-rigorous arguments also exist for the Sierpinski gasket with critical exponents depending on walk and fractal dimensions [Daerden, Vanderzande].
Let Y be a random variable associated with some property of an avalanche (number of sites in an avalanche, total number of topplings). We say the ASM on a sequence of graphs $G_n \nearrow G$ is critical if there exists a critical exponent $\delta_Y > 0$ such that

$$\lim_{n \to \infty} P_{\mu_n} (Y = y) \sim y^{-\delta_Y},$$

where μ_n is the uniform measure on recurrent sandpiles on G_n.

- No criticality for \mathbb{Z}.

Let Y be a random variable associated with some property of an avalanche (number of sites in an avalanche, total number of topplings). We say the ASM on a sequence of graphs $G_n \nearrow G$ is critical if there exists a critical exponent $\delta_Y > 0$ such that

$$\lim_{n \to \infty} P_{\mu_n} (Y = y) \sim y^{-\delta_Y},$$

where μ_n is the uniform measure on recurrent sandpiles on G_n.

- No criticality for \mathbb{Z}.
- Criticality for \mathbb{Z}^d, $d > 1$.
Let Y be a random variable associated with some property of an avalanche (number of sites in an avalanche, total number of topplings). We say the ASM on a sequence of graphs $G_n \nearrow G$ is critical if there exists a critical exponent $\delta_Y > 0$ such that

$$\lim_{n \to \infty} P_{\mu_n}(Y = y) \sim y^{-\delta_Y},$$

(3)

where μ_n is the uniform measure on recurrent sandpiles on G_n.

- No criticality for \mathbb{Z}.
- Criticality for \mathbb{Z}^d, $d > 1$.
- Regular trees are critical.
Let Y be a random variable associated with some property of an avalanche (number of sites in an avalanche, total number of topplings). We say the ASM on a sequence of graphs $G_n \nearrow G$ is critical if there exists a critical exponent $\delta_Y > 0$ such that

$$\lim_{n \to \infty} P_{\mu_n} (Y = y) \sim y^{-\delta_Y},$$ \hspace{1cm} (3)$$

where μ_n is the uniform measure on recurrent sandpiles on G_n.

- No criticality for \mathbb{Z}.
- Criticality for \mathbb{Z}^d, $d > 1$.
- Regular trees are critical.
- Non-rigorous arguments also exist for the Sierpinski gasket with critical exponents depending on walk and fractal dimensions [Daerden, Vanderzande].
Let $G_n \nearrow G$. For each G_n pick a root uniformly at random. This provides a sequence of measures, ν_n, on the space of finite rooted graphs. The limit $\nu = \lim_{n \to \infty} \nu_n$ is called the *random weak limit* of the sequence ν_n.

Theorem (D’Angeli, Donno, Matter, Nagnibeda) For $\Gamma < \text{Aut}(T)$, let G_n be the Schreier graph of the action of Γ on the nth level of the tree, and let ν_n be the uniform measure on the vertices of G_n. The random weak limit of this sequence of graphs is the set of Schreier graphs G_ξ, $\xi \in \partial T$ of the action of G on ∂T with the uniform measure on ∂T.

Theorem (Matter, Nagnibeda) The ASM on a sequence of Schreier graphs of the Basilica group is a.s. critical in the random weak limit.
Let $G_n \rhd G$. For each G_n pick a root uniformly at random. This provides a sequence of measures, ν_n, on the space of finite rooted graphs. The limit $\nu = \lim_{n \to \infty} \nu_n$ is called the \textit{random weak limit} of the sequence ν_n.

Theorem (D’Angeli, Donno, Matter, Nagnibeda)

For $\Gamma < \text{Aut}(T)$, let G_n be the Schreier graph of the action of Γ on the nth level of the tree, and let ν_n be the uniform measure on the vertices of G_n. The random weak limit of this sequence of graphs is the set of Schreier graphs G_ξ, $\xi \in \partial T$ of the action of G on ∂T with the uniform measure on ∂T.
Let $G_n \xrightarrow{\sim} G$. For each G_n pick a root uniformly at random. This provides a sequence of measures, ν_n, on the space of finite rooted graphs. The limit $\nu = \lim_{n \to \infty} \nu_n$ is called the random weak limit of the sequence ν_n.

Theorem (D’Angeli, Donno, Matter, Nagnibeda)

For $\Gamma < \text{Aut}(T)$, let G_n be the Schreier graph of the action of Γ on the nth level of the tree, and let ν_n be the uniform measure on the vertices of G_n. The random weak limit of this sequence of graphs is the set of Schreier graphs G_ξ, $\xi \in \partial T$ of the action of G on ∂T with the uniform measure on ∂T.

Theorem (Matter, Nagnibeda)

The ASM on a sequence of Schreier graphs of the Basilica group is a.s. critical in the random weak limit.
The abelian sandpile model on fractals
Sandman groups

Russ Thompson

The abelian sandpile model on fractals
Sandman groups
Start with the lamplighter group \(\mathbb{Z} \wr \mathbb{Z} = \langle a, t | [a^t, a^i], \forall i, j \in \mathbb{Z} \rangle \),
• Start with the lamplighter group \(\mathbb{Z} \wr \mathbb{Z} = \langle a, t \vert [a^t, a^t], \forall i, j \in \mathbb{Z} \rangle \),

• Quotient by all the \(\mathbb{Z} \)-translates of the toppling rule: \(a^2 a^{-2t} a \),
Start with the lamplighter group \(\mathbb{Z} \wr \mathbb{Z} = \langle a, t | [a^t, a^j], \forall i, j \in \mathbb{Z} \rangle \),

Quotient by all the \(\mathbb{Z} \)-translates of the toppling rule: \(a^t a^{-2t} a \),

\(\mathbb{Z} \wr \mathbb{Z} / \langle a^t a^{-2t} a \rangle \) is isomorphic to?
Start with the lamplighter group \(\mathbb{Z} \wr \mathbb{Z} = \langle a, t | [a^i, a^j], \forall i, j \in \mathbb{Z} \rangle\),

Quotient by all the \(\mathbb{Z}\)-translates of the toppling rule: \(a^t a^{-2t} a\),

\(\mathbb{Z} \wr \mathbb{Z}/\langle a^t a^{-2t} a \rangle\) is isomorphic to?

The Heisenberg group.
• Start with the lamplighter group $\mathbb{Z} \wr \mathbb{Z} = \langle a, t | a^t, a^t, \forall i, j \in \mathbb{Z} \rangle$,
• Quotient by all the \mathbb{Z}-translates of the toppling rule: $a^t a^{-2t} a$,
• $\mathbb{Z} \wr \mathbb{Z} / \langle a^t a^{-2t} a \rangle$ is isomorphic to? The Heisenberg group.
Let H and K be groups and suppose K acts on a set X. The \textit{permutational wreath product} $H \wr_X K$ is the semidirect of $\sum_X A$ by G. Group elements are (f, k) where $f : X \to H$ with finite support and $k \in K$.
Let H and K be groups and suppose K acts on a set X. The *permutational wreath product* $H \wr_X K$ is the semidirect of $\sum_X A$ by G. Group elements are (f, k) where $f : X \to H$ with finite support and $k \in K$.

Multiplication is defined by

$$(f_1, h_1)(f_2, h_2) = (f_1(h_1 \cdot f_2), h_1 h_2).$$
Let H and K be groups and suppose K acts on a set X. The permutational wreath product $H \wr_X K$ is the semidirect of $\sum_X A$ by G. Group elements are (f, k) where $f : X \to H$ with finite support and $k \in K$.

Multiplication is defined by

$$(f_1, h_1)(f_2, h_2) = (f_1(h_1 \cdot f_2), h_1h_2).$$

Fixing a basepoint $o \in X$ lets you talk about the X location, $o \cdot h^{-1}$, of an element (f, h).

Russ Thompson

The abelian sandpile model on fractals
A sandman group is a quotient of a permutational wreath product $\mathbb{Z} \wr_X K$ by some K-invariant toppling relation.
A sandman group is a quotient of a permutational wreath product $\mathbb{Z} \wr_X K$ by some K-invariant toppling relation. A toppling relation, τ, is an element of the group ring $\mathbb{Z}K$ the sum of whose coefficients is non-positive. If the sum of the coefficients of τ is negative we say the toppling rule is dissipative. We denote such a group by $\mathcal{S}(X, G, \tau)$.

Some example toppling relations for $\mathbb{Z} \wr \mathbb{Z}$: $a^2 - 3a$ gives Sol, $a^2 - n$ gives $\text{BS}(1,n)$, $a^4 - 2a^3a^2 - 2a^3a - 2a^3$.

Russ Thompson

The abelian sandpile model on fractals
A sandman group is a quotient of a permutational wreath product $\mathbb{Z} \wr_X K$ by some K-invariant toppling relation. A toppling relation, τ, is an element of the group ring $\mathbb{Z}K$ the sum of whose coefficients is non-positive. If the sum of the coefficients of τ is negative we say the toppling rule is dissipative. We denote such a group by $S(X, G, \tau)$.

Some example toppling relations for $\mathbb{Z} \wr \mathbb{Z}$

- $a^2 a^{-3} a$ gives Sol,
A sandman group is a quotient of a permutational wreath product $\mathbb{Z} \wr_X K$ by some K-invariant toppling relation. A toppling relation, τ, is an element of the group ring $\mathbb{Z}K$ the sum of whose coefficients is non-positive. If the sum of the coefficients of τ is negative we say the toppling rule is dissipative. We denote such a group by $S(X, G, \tau)$.

Some example toppling relations for $\mathbb{Z} \wr \mathbb{Z}$

- $a^2 a^{-3} a$ gives Sol,
- $a^t a^{-n}$ gives BS$(1, n)$,
A \textit{sandman group} is a quotient of a permutational wreath product $\mathbb{Z} \wr_X K$ by some K-invariant toppling relation. A \textit{toppling relation}, τ, is an element of the group ring $\mathbb{Z}K$ the sum of whose coefficients is non-positive. If the sum of the coefficients of τ is negative we say the toppling rule is \textit{dissipative}. We denote such a group by $S(X, G, \tau)$.

Some example toppling relations for $\mathbb{Z} \wr \mathbb{Z}$

- $a^{t^2} a^{-3t} a$ gives Sol,
- $a^t a^{-n}$ gives BS$(1, n)$,
- $a^{t^4} a^{-2t^3} a^{t^2} a^{-2t} a$.
Let \mathcal{H} be the Hanoi towers groups and let X be the Schreier graph of the quotient $\mathcal{H}/\text{Stab}(0)$. We denote the standard generators of \mathcal{H} as r, s, t. The toppling relation $a^r a^s a^t a^{-3}$ corresponds to the classical ASM on X.

\[
\begin{array}{c}
\includegraphics[width=0.7\textwidth]{sierpinski_gasket_diagram}
\end{array}
\]
Theorem (T.)

If \(\tau \) is “strongly” dissipative there exist simple random walks, \(X_n \), on the Cayley graph of \(S(X, G, \tau) \) which satisfy \(\mathbb{E}|X_n| \asymp n^{1/2} \) and a law of iterated logarithm.

Idea.
Given a sandpile \(h \) show that the number of grains in \(h \) is determined by \(|\text{supp}(h)| \) and \(\log(1 + \max|h|) \). This provides an upper bound on the length of the random walk. This result depends on the number of sites a random walk visits on \(\mathbb{Z} \). For \(\mathbb{Z}^2 \) or \(\mathbb{Z}^3 \) the number of sites visited is much larger, but fractals can provide intermediate behavior.
An application

Theorem (T.)

If τ is “strongly” dissipative there exist simple random walks, X_n, on the Cayley graph of $S(X,G,\tau)$ which satisfy $\mathbb{E}|X_n| \simeq n^{1/2}$ and a law of iterated logarithm.

Idea. Given a sandpile h show that the number of grains in h^0 is determined by $|\text{supp}(h)|$ and $\log^{1+\epsilon}(\max|h|)$. This provides an upper bound on the length of the random walk.
Theorem (T.)

If τ is “strongly” dissipative there exist simple random walks, X_n, on the Cayley graph of $\mathcal{S}(X, G, \tau)$ which satisfy $\mathbb{E}|X_n| \sim n^{1/2}$ and a law of iterated logarithm.

Idea. Given a sandpile h show that the number of grains in h^0 is determined by $|\text{supp}(h)|$ and $\log^{1+\epsilon}(\max|h|)$. This provides an upper bound on the length of the random walk.

This result depends on the number of sites a random walk visits on \mathbb{Z}. For \mathbb{Z}^2 or \mathbb{Z}^3 the number of sites visited is much larger, but fractals can provide intermediate behavior.
Some Questions

- What does a sequence of stable sandpiles obtained from a random walk on a sandman group look like?
Some Questions

- What does a sequence of stable sandpiles obtained from a random walk on a sandman group look like?
- What can we say about the Martin or Poisson boundary of sandman groups and how are these related to recurrent configurations in the infinite volume limit?
Some Questions

- What does a sequence of stable sandpiles obtained from a random walk on a sandman group look like?
- What can we say about the Martin or Poisson boundary of sandman groups and how are these related to recurrent configurations in the infinite volume limit?
- What other algebraic or geometric information can be gleaned about a sandman group from the nature of the embedded ASM?