Mean value properties on Sierpinski type fractals

Hua Qiu
(Joint work with Robert S. Strichartz)

Department of Mathematics
Nanjing University, Cornell University
1. Introduction

For a domain Ω in Euclidean space, a continuous function u is harmonic ($\Delta u = 0$) if and only if

$$\frac{1}{|B_r(x)|} \int_{B_r(x)} u(y) dy = u(x)$$

if $B_r(x) \subset \Omega$ where $B_r(x)$ is the ball of radius r about x.
More generally, if \(u \) is not assumed harmonic but \(\Delta u \) is a continuous function, then

\[
\lim_{r \to 0} \frac{1}{r^2} \left(\frac{1}{|B_r(x)|} \right) \int_{B_r(x)} u(y) dy - u(x) = c_n \Delta u(x) \tag{1}
\]

for the appropriate dimensional constant \(c_n \).
What are the fractal analogs of these results? What are the fractal analogs of ”balls” on which we do the averaging? So if K is a fractal and $x \in K$, we would like to know that there is a sequence of sets $B_k(x)$ containing x with $\bigcap_k B_k(x) = \{x\}$ such that

$$\frac{1}{\mu(B_k(x))} \int_{B_k(x)} u(y) dy = u(x)$$

for every harmonic function u.
We call $B_k(x)$ the \textit{k-level mean value neighborhood} of x.

Let $K = SG$ equipped with the standard harmonic structure and the standard self-similar measure.

If x is a nonboundary vertex point, we can easily answer the question with $B_k(x)$ being the two union of the k level neighboring cells of x.

What about the generic points?
More generally, for general u not assumed harmonic but belonging to $dom\Delta$, does an analogous formula of (1) still hold?
2. Mean value neighborhoods on Sierpinski gasket

Consider any cell $F_w(SG) = C_w$ with boundary points $F_w(q_i) = p_i$.
For any point $x \in C_w$ there exist coefficients $a_i(x)$ such that

$$h(x) = \sum_i a_i(x)h(p_i)$$

for any given harmonic function h.
Since constants are harmonic we must have

\[\sum_i a_i(x) = 1, \]

and by the maximum principle all \(a_i(x) \geq 0. \)

We can compute \(\{a_i(x)\} \) for \(x \) any junction point by using the harmonic extension algorithm.
Let W denote the triangle in \mathbb{R}^3 with boundary points $(1, 0, 0), (0, 1, 0), (0, 0, 1)$.

So $\{a_i(x)\} \in W$ for any $x \in C_w$.

Of course not every point in W occurs in this way.
Figure 1.
Given a set \(B \subset SG \), define
\[
M_B(f) = \frac{1}{|B|} \int_B f d\mu
\]
the *mean value* of function \(f \) on \(B \).

By linearity,
\[
M_B(h) = \sum_i a_i h(p_i)
\]
for some coefficients \(\{a_i\} \) for any harmonic function \(h \).

We also have \(\sum_i a_i = 1 \) by considering \(h \equiv 1 \).
Idea: We hope that \(\{a_i\} \in W \) if \(C_w \subset B \). If this is true, we have a map

\[\{B\} \rightarrow W. \]

If we can show that the map is onto for some reasonable class of sets \(B \), then we can get our first \(B_0(x) \) for every \(x \in C_w \), and then by zooming in get a full sequence \(B_k(x) \).
Observation:

Note that $M_{C_w}(h) = \sum_i \frac{1}{3} h(p_i)$ so we hit the center point $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ of W by taking $B = C_w$.

If we take B to be the union of C_w and one of its neighboring cell of the same size, then

$$M_B(h) = h(p_i)$$

for the point of intersection.
So we can get the 3 vertices $(1,0,0), (0,1,0), (0,0,1)$ of W in this way.

By varying B continuously between the two we can hit a curve in W joining the center to any vertex.

Figure 2.
This looks like the beginning of an argument to show that the mapping is onto.

By the observation, we should require B to be a subset of the union of C_w and its 3 neighbors, containing C_w.

Reasonable choice of B: connected, symmetric, depends only on the relative geometry of x and C_w, independent of the size of C_w and the location of C_w.

Denote by C_0, C_1, C_2 the three neighboring cells of the same size of C_w, intersecting C_w at p_i for each i. Write D_w the union of C_w and its 3 neighbors, i.e., $D_w = C_w \cup C_0 \cup C_1 \cup C_2$.

Consider a set B, $C_w \subset B \subset D_w$.

$$B = C_w \cup E_0 \cup E_1 \cup E_2,$$

where $E_i = B \cap C_i$, $i = 0, 1, 2$.
We restrict each E_i to be a triangle sub-domain of C_i, symmetric under the reflection symmetry that fixes p_i, containing p_i as one of its boundary points.

Figure 3.
Suppose the height of C_w is r, then the height of E_i should be $c_i r$ for $0 \leq c_i \leq 1$. Hence we can write the set

$$B = B(c_0, c_1, c_2).$$

For example, $B(0, 0, 0) = C_w$ and $B(1, 1, 1) = D_w$.

Denote by

$$\mathcal{B}^* = \{ B(c_0, c_1, c_2) : 0 \leq c_i \leq 1 \}$$

the family of all such sets.
Let T_w denote the map from B^* to π_W (the plane containing W) described before.

T_w can be viewed as a nonlinear vector valued function from $[0,1]^3$ to π_W. For simplicity, we may write $T_w(\{c_i\}) = \{a_i\}$ for each set $B(c_0, c_1, c_2)$.
Fact 1. The map \mathcal{T}_w is independent of the particular choice of C_w.

Hence we can drop the subscript w on \mathcal{T} for simplicity.

The proof of Fact 1 benefits from the symmetric properties of E_i's.
Fact 2. There exists $B \in \mathcal{B}^*$, such that $\mathcal{T}(B) \notin W$.

For example, a easy computation shows that $\mathcal{T}(0, 1, 1) = \{-\frac{1}{9}, \frac{5}{9}, \frac{5}{9}\}$.

However, if we can show that the image of the map \mathcal{T} can cover the triangle W, things will still go well.
Theorem 1. The map T from B^* to π_W fills out a region \tilde{W} which contains the triangle W.

Sketch of the proof.

Step 1. Consider a subfamily $B_1 = \{B(0, 0, c_2) : 0 \leq c_2 \leq 1\}$ of B^*. If we restrict the map T to B_1, by varying c_2 continuously between 0 and 1 we can hit a curve (it is a line segment which follows from the symmetry of E_2) in W joining the center O to an vertex point N.
Step 2. Consider another subfamily \(\mathcal{B}_2 = \{ B(0, c, c) : 0 \leq c \leq 1 \} \) of \(\mathcal{B}^* \). If we restrict the map \(T \) to \(\mathcal{B}_2 \), by varying \(c \) continuously between 0 and 1 we can hit a curve (it is a line segment which follows from the symmetric effect of \(E_1 \) and \(E_2 \)) in \(W \) joining the center \(O \) to an point \(Q \). A directly computation shows that \(Q \) lies outside of the triangle \(W \).

Step 3. \(T(\{ B(0, c, 1) : 0 \leq c \leq 1 \}) \) is a curve located outside of the triangle \(W \), joining \(N \) to \(Q \). The intersection of this curve and \(W \) consists exactly only one point \(N \).
Step 4. Fix a number $0 \leq y \leq 1$. Consider a subfamily $C_y = \{B(0, c, y) : 0 \leq c \leq y\}$ of \mathcal{B}^*. If we restrict the map T on C_y, by varying c continuously between 0 and y we can hit a curve Γ_y joining the two points $T(B(0, 0, y))$ and $T(B(0, y, y))$. The first endpoint $T(B(0, 0, y))$ lies on the line segment \overline{ON} and the second endpoint $T(B(0, y, y))$ lies on the line segment \overline{OQ}. Hence if we vary y continuously between 0 and 1, we can fill out the $1/6$ region of \widetilde{W}.

Then by exploiting the symmetry, we get the desired result. □
Figure 4.
Let \(B \) be a subfamily of \(B^* \) defined by

\[
B = \{ B(0, c_2, c_3) : 0 \leq c_2, c_3 \leq 1 \} \\
\cup \{ B(c_1, 0, c_3) : 0 \leq c_1, c_3 \leq 1 \} \\
\cup \{ B(c_1, c_2, 0) : 0 \leq c_1, c_2 \leq 1 \},
\]

i.e., \(B \) consisting of those elements \(B \) in \(B^* \) which have the decomposition form \(B = C_w \cup E_1 \cup E_2 \) or \(B = C_w \cup E_1 \cup E_3 \), or \(B = C_w \cup E_2 \cup E_3 \).
Remark of Theorem 1. Actually, we have proved that \(\tilde{W} = T(B) \). Moreover, if we use \(B \) in stead of \(B^* \). Then the map

\[T : B \rightarrow \tilde{W} \]

is one-to-one.

Hence for each \(x \in C_w \), there exists a unique set \(B \in \mathcal{B} \), \(C_w \subset B \subset D_w \), such that \(M_B(h) = h(x) \) for any harmonic function \(h \). We call the set \(B \) associated to this \(C_w \) a \textit{k level mean value neighborhood of} \(x \) where \(k \) is the length of \(w \).
Given a point $x \in SG \setminus V_0$, let k_0 be the smallest value of k such that there exists a k level cell C_w containing x but not intersecting V_0. k_0 depends on the location of x in SG.

Then we can find a sequence of words $w^{(k)}$ of length k ($k \geq k_0$) and a sequence of mean value neighborhoods $B_k(x)$ associated to $C_{w^{(k)}}$.

$\{B_k(x)\}_{k \geq k_0}$ forms a system of neighborhoods of the point x satisfying $\bigcap_{k \geq k_0} B_k(x) = \{x\}$.
3. Mean value properties of functions in $\text{dom}\Delta$

Given a point $x \in SG \setminus V_0$, we want to define c_B such that

$$M_B(u) - u(x) \approx c_B \Delta u(x)$$

for $u \in \text{dom}\Delta$.

Let v be a function satisfying $\Delta v \equiv 1$. Define c_B by

$$c_B = M_B(v) - v(x).$$
Note that the value of c_B is independent of which v, because any two differ by a harmonic function h and $M_B(h) - h(x) = 0$.

So we can choose

$$v = - \int_{SG} G(\cdot, y) d\mu(y).$$

(v vanishes on the boundary of SG, G is the Green’s function).
c_B depends only on the relative geometry of B and C_w and the size of C_w, not on the location of x or C_w in SG. Moreover,

Theorem 2. There exist two positive constants c_0 and c_1, such that

$$c_0 \frac{1}{5k} \leq c_B \leq c_1 \frac{1}{5k}$$

for any k level mean value neighborhood B.
Given a point x and C_w a k level neighborhood of x, for any $u \in \text{dom} \Delta^2$, we can write

$$u = h^{(k)} + (\Delta u(x))v + R^{(k)}$$

on C_w, where $h^{(k)}$ is a harmonic function defined by

$$h^{(k)} + (\Delta u(x))v|_{\partial C_w} = u|_{\partial C_w}.$$
It is not hard to prove that

Fact 3. *The remainder satisfies*

\[R^{(k)} = O\left(\left(\frac{3}{5} \cdot \frac{1}{5}\right)^k\right) \]

on \(C_w \) (*also on* \(B_k(x) \)).

(This looks like the Taylor expansion of \(u \) at \(x \).)
Proof of Fact 3.

It is easy to check that $\Delta_y R^{(k)}(y) = \Delta_y u(y) - \Delta_y u(x)$ and $R^{(k)}(y)$ vanishes on the boundary of C_w. Hence $R^{(k)}$ is given by the integral of $\Delta_y u(y) - \Delta_y u(x)$ on C_w against a scaled Green’s function.

Since the scaling factor is $(\frac{1}{5})^k$, and

$$|\Delta_y u(y) - \Delta_y u(x)| \leq c(\frac{3}{5})^k$$

(Δu satisfies the Holder condition with $\gamma = \frac{3}{5}$), we get
the desired result. □

A more generalized version of Fact 3 is

Fact 3’ Let \(u \in \text{dom} \Delta \) with \(g = \Delta u \) satisfying the following Holder condition

\[
|g(y) - g(x)| \leq c \gamma^k, \quad (0 < \gamma < 1)
\]

for all \(y \in C_w \), then the remainder satisfies

\[
R^{(k)} = O((\gamma \cdot \frac{1}{5})^k)
\]

on \(C_w \) (also on \(B_k(x) \)).
Using the Taylor expansion of u at x and Theorem 2, we have

\[
\frac{1}{c_{B_k}(x)} (M_{B_k}(x)(u) - u(x)) - \Delta u(x) = 1 \frac{1}{c_{B_k}(x)} (M_{B_k}(x)(R^k) - R^k(x))
\]

\[
= \frac{1}{c_{B_k}(x)} O((\gamma \cdot \frac{1}{5})^k) = O(\gamma^k).
\]
Hence we get

\[
\lim_{k \to \infty} \frac{1}{c_{B_k}(x)}(M_{B_k}(x)(u) - u(x)) = \Delta u(x),
\]

which is a fractal analogous formula of (1).
4. Generalization on a class of Sierpinski type fractals

Let K be a p.c.f. self-similar fractal. We assume that $\#V_0 = 3$ and all structures possess full $D3$ symmetry.

A) We can choose all $c_{i,j} = 1$ in defining the graph energy on Γ_0, and all the resistance renormalization factors r_i are the same number r.

B) We must have $\mu_1 = \mu_2 = \mu_3$, i.e., μ is the standard self-similar measure on K.
\(SG_3, \ SG_n,\) Hexagasket, 3-dimensional SG...

For the first question on how to find the mean value neighborhoods, it is done.

However, for the second question on how to estimate the \(c_B\) constants, it is still on working.
Thank you!