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Q: can we do intrinsic differential geometry and analysis ?
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Early results on diffusions on fractals

Sheldon Goldstein, Random walks and diffusions on fractals. Percolation
theory and ergodic theory of infinite particle systems (Minneapolis,
Minn., 1984-1985), IMA Vol. Math. Appl., 8, Springer

Summary: we investigate the asymptotic motion of a random walker,
which at time n is at X(n), on certain ‘fractal lattices’. For the
‘Sierpinski lattice’ in dimension d we show that, as L — oo, the process
Y (t) = X([(d + 3)‘t]) /2" converges in distribution to a diffusion on
the Sierpin’ski gasket, a Cantor set of Lebesgue measure zero. The
analysis is based on a simple ‘renormalization group’ type argument,
involving self-similarity and ‘decimation invariance’. In particular,

IX(n)| ~ n7,
where v = (In2)/In(d + 3)) < 2.

Shigeo Kusuoka, A diffusion process on a fractal. Probabilistic methods
in mathematical physics (Katata/Kyoto, 1985), 1987.



M.T. Barlow, E.A. Perkins, Brownian motion on the Sierpinski
gasket. (1988)

M. T. Barlow, R. F. Bass, The construction of Brownian motion on
the Sierpiriski carpet. Ann. Inst. Poincaré Probab. Statist. (1989)
S. Kusuoka, Dirichlet forms on fractals and products of random
matrices. (1989)

T. Lindstrgm, Brownian motion on nested fractals. Mem. Amer.
Math. Soc. 420, 1989.

» J. Kigami, A harmonic calculus on the Sierpiriski spaces. (1989)

» J. Béllissard, Renormalization group analysis and quasicrystals, ldeas

and methods in quantum and statistical physics (Oslo, 1988)
Cambridge Univ. Press, 1992.

M. Fukushima and T. Shima, On a spectral analysis for the
Sierpiriski gasket. (1992)

J. Kigami, Harmonic calculus on p.c.f. self-similar sets. Trans.
Amer. Math. Soc. 335 (1993)

J. Kigami and M. L. Lapidus, Weyl's problem for the spectral

distribution of Laplacians on p.c.f. self-similar fractals. Comm.
Math. Phys. 158 (1993)



Main classes of fractals considered

vV v v v v .Y

[0,1]

Sierpinski gasket

nested fractals

p.c.f. self-similar sets, possibly with various symmetries

finitely ramified self-similar sets, possibly with various symmetries

infinitely ramified self-similar sets, with local symmetries, and with
heat kernel estimates (such as the Generalized Sierpiriski carpets)

metric measure Dirichlet spaces, possibly with heat kernel estimates
(MMD+HKE)



Figure: Sierpiniski gasket and Lindstrgm snowflake (nested fractals), p.c.f.,
finitely ramified)




Figure: The basilica Julia set, the Julia set of z* — 1 and the limit set of the
basilica group of exponential growth (Grigorchuk, Zuk, Bartholdi, Virag,
Nekrashevych, Kaimanovich, Nagnibeda et al., Rogers-T.).



Figure: Diamond fractals, non-p.c.f., but finitely ramified



Figure: Laakso Spaces (Ben Steinhurst), infinitely ramified



Figure: Sierpinski carpet, infinitely ramified



Existence, uniqueness, heat kernel estimates

Brownian motion:

Thiele (1880), Bachelier (1900)

Einstein (1905), Smoluchowski (1906)

Wiener (1920"), Doob, Feller, Levy, Kolmogorov (1930'),
Doeblin, Dynkin, Hunt, lto ...

Wiener process in R" satisfies %E|Wt|2 =t and has a
Gaussian transition density:

1 x —y/?
Pe(x,y) = WGXP T

distance ~ V/ time

“Einstein space—time relation for Brownian motion”



De Giorgi-Nash-Moser estimates for elliptic and parabolic PDEs;

Li-Yau (1986) type estimates on a geodesically complete
Riemannian manifold with Ricci > 0:

1 d(x,y)?
Pe(x,y) ~ mexp <—C ¢ >

distance ~ V time



Brownian motion on RY: E|X, — Xq| = ct!/2.

Anomalous diffusion: E|X; — Xo| = o(t!/?), or (in regular enough
situations),
E[X; — Xo| ~ t!/d

with dy, > 2.

Here d,, is the so-called walk dimension (should be called “walk index”
perhaps).

This phenomena was first observed by mathematical physicists working in
the transport properties of disordered media, such as (critical) percolation
clusters.



dw
1 d(x,y) ™~
pe(x,y) ~ tdn/dw exp (—Ctdwl_l

distance ~ (time) i

dy = Hausdorff dimension

= d,, = “walk dimension” (y=diffusion index)

N
IQ\'-‘

s
H
I

= ds = “spectral dimension” (diffusion dimension)

First example: Sierpinski gasket; Kusuoka, Fukushima, Kigami, Barlow,
Bass, Perkins (mid 1980'—)



Theorem (Barlow, Bass, Kumagai (2006)).

Under natural assumptions on the MMD (geodesic Metric Measure space
with a regular symmetric conservative Dirichlet form), the sub-Gaussian
heat kernel estimates are stable under rough isometries, i.e. under
maps that preserve distance and energy up to scalar factors.

Gromov-Hausdorff 4 energy



Theorem. (Barlow, Bass, Kumagai, T. (1989-2010).) On any fractal in
the class of generalized Sierpiriski carpets (includes cubes in RY) there
exists a unique, up to a scalar multiple, local regular Dirichlet form that
is invariant under the local isometries.

Therefore there there is a unique corresponding symmetric Markov
process and a unique Laplacian. Moreover, the Markov process is Feller
and its transition density satisfies sub-Gaussian heat kernel estimates.

Remark: intrinsic uniqueness is proved by Steinhurst for the Laakso
spaces (to appear in Potential Analysis) and for non-self-similar Sierpinski
carpets (work in progress)



Main difficulties for the Sierpinski carpet:

If it is not a cube in R", then

> ds < dy, dy > 2

> the energy measure and the Hausdorff measure are mutually singular;
» the domain of the Laplacian is not an algebra;
»

if d(x,y) is the (Euclidean-induced) shortest path metric, then
d(x, -) is not in the domain of the Dirichlet form (not of finite
energy) and so methods of Differential geometry seem to be not
applicable; **

» Lipschitz functions are not of finite energy;**

> in fact, we can not compute any non-constant functions of finite
energy;

» Fourier and complex analysis methods seem to be not applicable.

** see recent papers by Koskela and Zhou and by Hinz, Kelleher, T



Theorem. (Grigor'yan and Telcs, also [BBK])

On a MMD space the following are equivalent
(VD), (EHI) and (RES)

(VD), (EHI) and (ETE)

(PHI)

(HKE)

and the constants in each implication are effective.

vV v v

v

Abbreviations: Metric Measure Dirichlet spaces, Volume Doubling,
Elliptic Harnack Inequality, Exit Time Estimates, Parabolic Harnack
Inequality, Heat Kernel Estimates.

Remark: recent improvements in Grigor'yan and Hu, Heat kernels and
Green functions on metric measure spaces, to appear in Canad. J. Math.
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Aafadadd  *Spectral analysis on
fractafolds *
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A part of an infinite Sierpinski gasket.



Figure: An illustration to the computation of the spectrum on the infinite
Sierpiniski gasket. The curved lines show the graph of the function DR(-).

Theorem. (Béllissard 1988, T. 1998, Quint 2009)

On the infinite Sierpinski gasket the spectrum of the Laplacian consists of
a dense set of eigenvalues 9~1(X() of infinite multiplicity and a
singularly continuous component of spectral multiplicity one
supported on R~1(JR).



The Tree Fractafold.



An eigenfunction on the Tree Fractafold.
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Theorem. (Strichartz, T. 2010) The Laplacian on the periodic triangular
lattice finitely ramified Sierpinski fractal field consists of absolutely
continuous spectrum and pure point spectrum. The absolutely
continuous spectrum is 9%_1[0, ?] The pure point spectrum
consists of two infinite series of eigenvalues of infinite multiplicity. The
spectral resolution is given in the main theorem.



Recent results on spectral analysis and applications

G. Derfel, P. J. Grabner, and F. Vogl: Laplace Operators on Fractals and
Related Functional Equations, J. Phys. A, 45(46), (2012), 463001

N. Kajino, Spectral asymptotics for Laplacians on self-similar sets. J.
Funct. Anal. 258 (2010)

N. Kajino, T, Spectral gap sequence and on-diagonal oscillation of heat
kernels, work in progress

Joe Chen, R. Strichartz, Spectral asymptotics and heat kernels on
three-dimensional fractal sponges

J. F.-C. Chan, S.-M. Ngai, T, One-dimensional wave equations defined
by fractal Laplacians

U. Freiberg, L. Rogers, T, Eigenvalue convergence of second order
operators on the real line

B. Steinhurst, T, Spectral Analysis and Dirichlet Forms on Barlow-Evans
Fractals arXiv:1204.5207



0] ° O _ log9
ds = log 5
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_ log4
10) ° @) dr = log 5
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Poles (white circles) of the spectral zeta function of the Sierpiriski gasket.

See work of Grabner et al on relation to complex analysis and of
Steinhurst et al on applications to Casimir energy.



Remark: what are dimensions of the Sierpinski gasket?

>

>

I';’:g ~ 2.15 = Hausdorff dimension in effective resistance metric
3

2 = geometric, linear dimension

% ~ 1.58 = usual Hausdorff (Minkowsky, box, self-similarity)

dimension in Euclidean coordinates (geodesic metric)

% =~ 1.37 = usual spectral dimension

there are several Lyapunov exponent type dimensions related to
harmonic functions and harmonic coordinates (Kajino,
lonescu-Rogers-T)

1 = topological dimension, martingale dimension

» 21982 ~ .86 = polynomial spectral co-dimension (Grabner)?

log 5



*conclusion

perhaps
analysis and probability on fractals
analysis on metric measure spaces
sub-Riemannian geometry
converge

*3k %

Thank you for your attention :-)
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LECTURE 1
LAPLACIANS ON SELF-SIMILAR GRAPHS
AND RELATION TO SELF-SIMILAR GROUPS

R. Rammal and G. Toulouse, Random walks on fractal structures and percolation
clusters. J. Physique Letters 44 (1983), L13-L22.

R. Rammal, Spectrum of harmonic excitations on fractals. J. Physique 45 (1984).

S. Alexander, Some properties of the spectrum of the Sierpinski gasket in a mag-

netic field. Phys. Rev. B 29 (1984).

E. Domany, S. Alexander, D. Bensimon and L. Kadanoff, Solutions to the Schrodinger
equation on some fractal lattices. Phys. Rev. B (3) 28 (1984).

Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on fractals.
I. Quasilinear lattices. Il. Sierpiniski gaskets. lll. Infinitely ramified lattices. J. Phys.
A 16 (1983-1984).

R. B. Stinchcombe, Fractals, phase transitions and criticality. Fractals in the natural
sciences. Proc. Roy. Soc. London Ser. A 423 (1989), 17-33.

J. Béllissard, Renormalization group analysis and quasicrystals, ldeas and methods
in quantum and statistical physics (Oslo, 1988). Cambridge Univ. Press, 1992.
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Let A be the probabilistic Laplacian (generator of a simple random walk) on the
Sierpinski lattice. If z # -2,-2 -1 and R(z) = z(4z + 5), then

R(z) € 0(A) <= z € o(A)
o(A)=JrUD
where D % ¢ 3}U< U RS )
and Jg is the Julia set of R(z)

N
ot

N[ Aot




There are uncountably many nonisomorphic
Sierpinski lattices.
Theorem (T). The spectrum of A is pure point.
Eigenfunctions with finite support are complete.







Let A(0) be the Laplacian with zero (Dirichlet) boundary condition at &L. Then

the compactly supported eigenfunctions of A0) are not complete (eigenvalues in
&€ is not the whole spectrum).

Let OL(0) be the set of two points adjacent to L and w(AO) be the spectral

measure of A(0) associated with ]IaL(O)' Then Supp(w(AO)) = Jr has Lebesgue
measure zero and

d(w(AO) ®) R1,2)
dw(AO)

(82 +5)(2z + 3)
(224 1)(4z + 5)

(2)
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Fix p, g>0, p+qg=1, and define probabilistic Laplacians A,, on the segments
[0,3™] of Z, inductively as a generator of the random walks:

0 1
*——O
1 1
0 1 3
@ L ® ®

0 3" 2(3") 3ntl
L 4 L _
1 qp P q 1

and let A = lim A, be the corresponding probabilistic Laplacian on Z .

n—oo

12



If z #—1+xpand R(2)=2(22+32+2+pq)/pq, then R(2) € 0(A,) <
z € 0(Ant1)

Theorem(Joe Chen + T, almost completed). o(A) = J g, the Julia set of R(2).
If p=q, then o(A)=[—2, 0], spectrum is a.c.
If p #£ q, then o(A) is a Cantor set of Lebesgue measure zero,
spectrum is singularly continuous.

13



There are uncountably many “random” self-similar Laplacians A on Z:
For a sequence K = {k;}32,, k; € {0,1,2}, let
Xn=—> k;3
j=1
and A, is a probabilistic Laplacian on [X,,, X,,+3"]:

X, X, +371 X,+2(3™1) X,+3"
O— oo ® ooe ® eoe
1 q p P q 1
In the previous example k; = 0 for all 3.
Theorem.
For any sequence K we have 0(A) = Jgr. The same is true for the Dirichlet

Laplacian on Z (when k; = 0).

14



R. Grigorchuk and Z. Sunik, Asymptotic aspects of Schreier graphs and Hanoi
Towers groups, preprint.
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Sierpinski 3-graph
(Hanoi Towers-3 group)

\VAVAVAVAVAVAVAVA
VAV VA,
X
VA
VAV,
v

Sierpinski 4-graph
(standard)
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These three polynomials are conjugate:

Sierpinski 3-graph (Hanoi Towers-3 group): f(x) = x> —x — 3
f3)=3f3)=5

Sierpifiski 4-graph, “adjacency matrix” Laplacian: P(A) = 5\ — \?
P(0)=0,P'(0)=5

Sierpifiski 4-graph, probabilistic Laplacian: R(z) = 422 + 5z
R(0) =0, R'(0) =5

17



Theorem. Eigenvalues and eigenfunctions on the
Sierpinski 3-graphs and Sierpinski 4-graphs are in
one-to-one correspondence, with the exception of the

eigenvalue z = —% for the 4-graphs.
v 422 + 5z W

AVARRED P e

4.2 8
32" T 32

— ~"

222 + 4z

18
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Sierpinski 3-graph ! Sierpinski 4-graph
(Hanoi Towers-3 group) (standard)
R(z) = 22% + 4z R(z) = 32>+ 32

19
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Let H and JHy be Hilbert spaces, and U : Hy — JH be an isometry.

Definition. We call an operator H spectrally similar to an operator H with
functions ¢y and ¢4 if

U*(H — z)7'U = (po(2)Ho — ¢1(2)) ™"
In particular, if ¢g(2) # 0 and R(z) = ¢1(2)/po(2), then

U*(H — 2)7'U = (H — R(2))".

IfH:(S X)then

©o(2)

X Q
S — ZI() — X(Q — ZIl)_lX = QOO(Z)HO — QOl(Z)I()

Theorem (Malozemov, Teplyaev). If A is the graph Laplacian on a self-
similar symmetric infinite graph, then

HRQO-(AOO) QHRU:DOO

where D, is a discrete set and Jg is the Julia set of the rational function R.
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LECTURE 2
LAPLACIANS ON SELF-SIMILAR FRACTALS
AND SPECTRAL ZETA FUNCTIONS

Three contractions Fy, Fp, F3 : R' — R, Fj(z) = 3(x+p;), with fixed

points p; = 0, %, 1. The interval I=[0, 1] is a unique compact set such that

1= ] F(D)
j=1,2,3
The boundary of I is 81 = Vy = {0,1} and the discrete approrima-
tions toIare V,, = |J F;(Vp-1) = {3%}2:0

. ) =1,2,3 )
Vi ° A/o | o\‘ °
Vo o—eo ‘Ko l 0% o—eo

27



Definition. The discrete Dirichlet (energy) form on V, is

En(f) = D (F)—F(@)

z,ycVn
Yy~

and the Dirichlet (energy) form on I is E(f) = lim 3"E,(f) =
Jo 1f'()|?da

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition. 3&,,.1(f) > &,.(f) and 3E,,41(h) = E,.(h) = 37"E(h)

for a harmonic h.

Proposition. The Dirichlet (energy) form on I is self-similar in the sense that

E(f) =3 E(foF)

j:19273

28



Definition. The discrete Laplacians on V,, are

Anf(@) =3 F)—Fx), TEV,\V,

yeVn
y~a

and the Laplacian on I is Af(z) = lim 9"A, f(z) = f"(z)

Gauss—Green (integration by parts) formula:

1 1
e() = — [ rafdz+1f|,

Spectral asymptotics: Let p(\) be the eigenvalue counting function of
the Dirichlet or Neumann Laplacian A:

p(A) = #{7 : A; < A}

p(A) 1

Then

lim =
A—00 Ads/2 oy
where ds = 1 is the spectral dimension.

29



—A'>_8/2

Definition. The spectral zeta function is {A(s) = Z)\ 750( J
J

Its poles are the complex spectral dimensions.

Let R(z) be a polynomial of degree IN such that its Julia set Jp C (—o0, 0],
R(0) =0and ¢ = R'(0) > 1.

2log N -

Definition. The zeta function of R(z) for Re(s) > dr = oec 1S

(3(s) = lim ) (—c"z)"%/% = Z)\;s/z

zeR™"{z0}

Theorem. (*0(s) = 1_‘?7(5_)8/2 + £5°(8), where f1(s) and f,°(s) are ana-

lytic for Re(s)>0. If J g is totally disconnected, then this meromorphic continuation
extends to Re(s)>—e, where €>0.

In the case of polynomials this theorem has been improved by Grabner et al.
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Theorem. (a(s) = ¢} (s) where R(z) = 2(42"+122+9).
The Riemann zeta function {(s) satisfies {(s) = WSC;)%(S) The only complex
spectral dimension is the pole at s = 1.

A sketch of the proof: If 2z — 5, —3 then
R(z) € a'(An) < z € o0(Ani1)

and so {a(s) = C%(s) since the eigenvalues A; of A are limits of the eigenvalues
of 9" A,,.

Also Aj=—m?52 and so
> —S/2
CA(S) — Z (7T2j2) — ﬂ-—SC(S)
j=1
where {(s) is the Riemann zeta function. Q.E.D.

¢(s) = w°lim Z (—9"z)_8/2
zeR~ {0}
z#0

32



Definition. A, is p—Laplacian if
1 1
e(f) = [ I£@Pde=— | fA.fdu+ F1];,
0 0

Definition. A probability measure i is self-simzilar with weights mq, mo, mg

if u= > mjuokF;.
j=1,2,3

Proposition. A, f(.:v)——— lim (1+l)"An f(z).

k )+qf k+1) _f(gn)
An.f(g_n): k—|—1
where mi=ms, p—mfﬁnz, q—ml’j‘:mz and
m, mo s
1 qp D q 1
O_> @ @ @ @ @ @ @ @ ®
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Spectral asymptotics: If p(\) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian A, then
pP(A) pP(A)

0 < ll}I‘Ii)glf I < llin_)s;ip I

< o0

where the spectral dimension is

dy=— 5% kiggl < 1.
og(1+7)

All the inequalities are strict if and only if p # q.

Proposition. R(z) € 0(A,) <= z € 0(Ap11)
where z#—14p and R(z)=2(2z2+32+2+pq)/pq.
Note that R'(0)=1 + -, and d;=dp.

Theorem. (a,(s)=¢) (s)
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Three contractions F}, F,, F3 : R? — R?,
F;(x) = %(a:—i—pj), with fixed points p1, p2, D3.

.e!'!!’e. .i!'!!&. v'!'v .ir!i. .e!e.

The Sierpinski gasket is a unique compact set .S such that

S= U Fi(8)

j=1,2,3
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Definition. The boundary of S is

0S = Vo = {p1, P2, 3}
and discrete approximations to S are

Vi = U Fj(Vn—l)

j=1,2,3

Vo : Vi Vs
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Definition. The discrete Dirichlet (energy) form on V, is

En(f) = ) (Fy—f)?

z,ycVn
Yy~

and the Dirichlet (energy) form on S is
E(f) = lim (3)"€(f)

Definition. A function h is harmonic if it minimizes the energy given the
boundary values.

Proposition. 2E,.1(f) > &n(f)
ggnﬂ(h)zgn(h):(g) “"&(h) for a harmonic h.

Theorem (Kigami). € is a local regular Dirichlet form on S which is self-similar

in the sense that
E(f)=35 ) E(foF))

j:192’3
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Definition. The discrete Laplacians on V,, are

Anfx)=1> f)—fx), zEV,\V,

IS 2
y~x

and the Laplacian on S'is
A,f(x) = lim 5" A, f(=x)

if this limit exists and A, f is continuous.

Gauss—Green (integration by parts) formula:

&) =~ [ FAufdun+ Y F(P)2uf (D)

peoS
p is the normalized Hausdorff measure, which is self-similar with weights

l’l‘:% Z l,l,OFj.
1=1,2,3

re

»
W=
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Spectral asymptotics: If p(\) is the eigenvalue counting function of the Dirichlet
or Neumann Laplacian A, then
pP(A) p(A)

0< ll}I‘I_l)loglf X < lu;\n_)s;jlp AE

< o0

where the spectral dimension is

___log9
1<d3_10§5<2.

Proposition. R(z) € 0(A,) <= 2z € 0(Api1) where z£ — 1, -3, 5

and R(z) = z(5 + 4z2).

Theorem (Fukushima, Shima). Every eigenvalue of A, has a form
A=5"lim 5" R "(z)

n—00
where R™"™(zg) is a preimage of zy = —%, —% under the n-th iteration power
of the polynomial R(z). The multiplicity of such an eigenvalue is C13™ + C,.
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the Sierpinski gasket is

Can(s) = 3¢a(9) (5555 +550) + 3¢ (2

of the Laplacian on

Theorem. Zeta function

>~ |
VAN
| s
1910
™

/3
W ||
| 1L
10| 0
-~ 0

E
o0
2 =L
I I
» o
= <
A
<
o o o ¢ O O O
1||
o
=
ooooooo
) ) N O ) )
i
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Definition. If £ is a fractal string, that is, a disjoint collection of intervals of
lengths 1, then its geometric zeta function is (g (s) = ) lf.

Theorem (Lapidus). |If A_—dez is a Neumann or Dirichlet Laplacian on £,

then Ca(s) = 75 (s)Ce(s).

Example: Cantor self-similar fractal string.

If £ is the complement of the middle third Cantor set in [0, 1], then the complex

log 2—|—2zn7r EZ}

spectral dimensions are 1 and { log 3

Ce(s) = g, Ca(s) = C(8) g

41



log 2
log 3
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Definition. A post critically finite (p.c.f.) self-similar set F' is a compact con-
nected metric space with a finite boundary OF C F' and contractive injections
Y; : F — F such that

k
F=W(F) = | Jyi(F)
and i=1
Yo (F) [ %w(F) C ¥u(F) () 9w(dF),
for any two different words v and w of the same length. Here for a finite word

w € {1,...,k}™ we define Yy = 1y, O+« O Yy,
We assume that OF is a minimal such subset of F'. We call 1, (F') an m-cell.
The p.c.f. assumption is that every boundary point is contained

in a single 1-cell.

Theorem (Kigami, Lapidus). The spectral dimension of the Laplacian A, is
the unique solution of the equation

k
> (rip)®? =1
=1
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Conjecture. On every p.c.f. fractal F there exists a local regular Dirichlet form &
which gives positive capacity to the boundary points and is self-similar in the sense
that

k
E(f) = Z piE(for;)

for a set of positive refinement weights p = {p; ?:1-

Definition. The group GG of acts on a finitely ramified fractal F' if each g € G is
a homeomorphism of F' such that g(V;,) = V,, for all n > 0.

Proposition. Suppose a group GG of acts on a self-similar finitely ramified fractal
F' and G restricted to Vj is the whole permutation group of V. Then there exists
a unique, up to a constant, G-invariant self-similar resistance form £ with equal
energy renormalization weights p; and

Elfs )= Y (fl)—fly)™

Moreover, for any G-invariant self-similar measure p the Laplacian A, has the

spectral self-similarity property (a.k.a. spectral decimation).
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